

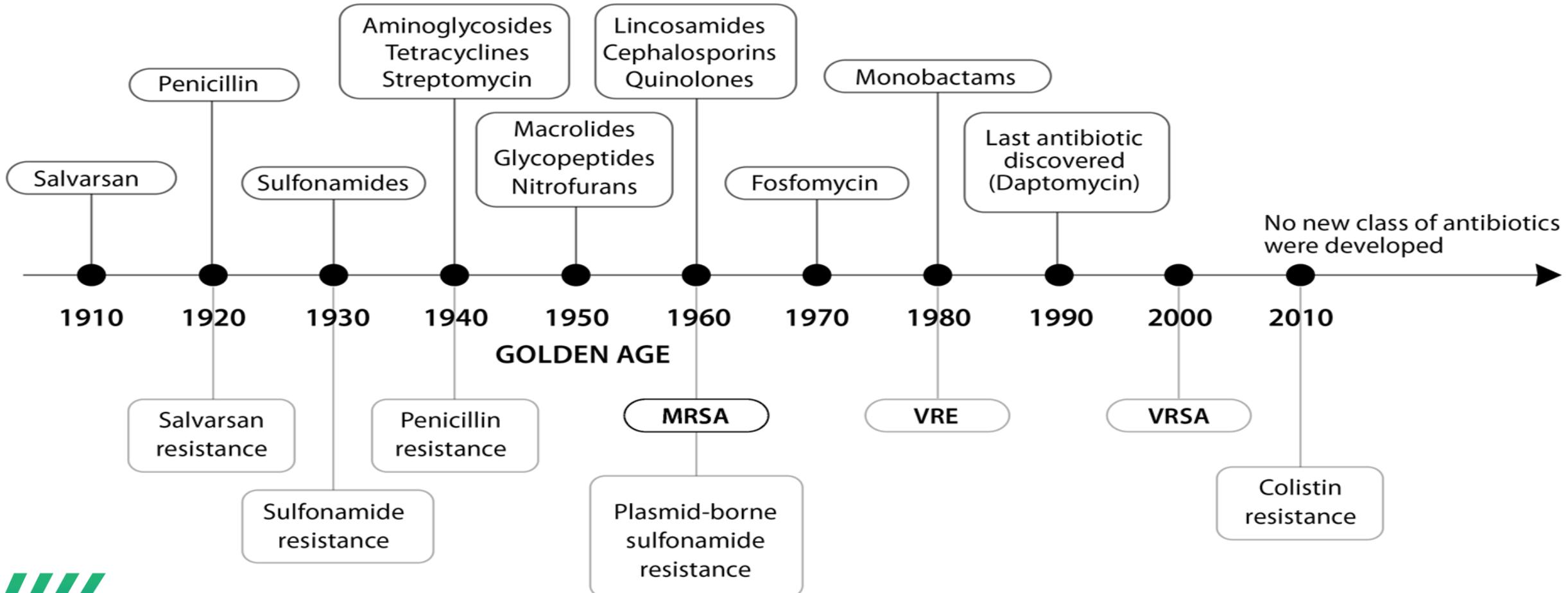
Management of Multidrug Resistant Bacterial Infections

Keynote Speaker

Prof. Khan Abul Kalam Azad

Professor of Medicine

Introduction to Multidrug Resistance (MDR)


Multidrug-resistant (MDR) bacteria are bacterial strains that are resistant to multiple classes of antibiotics, rendering standard treatments ineffective.

These infections pose a significant **global health threat**, contributing to increased mortality, prolonged hospital stays, and higher healthcare costs.

They are particularly dangerous for **immunocompromised** patients and those in critical care settings.

History of Antibiotics: the Battle Between Humans & Bacteria

AMR Surveillance in Bangladesh (2017-2023)

Category	Subcategory	Data
Surveillance Overview	Case-based Surveillance	24.26% of total isolates (8654/35662), 34,340 samples tested
	Lab-based Surveillance	Includes private labs, primarily blood, urine samples; 35662 isolates
	Sample Type Distribution	Urine (70%), Blood (10%), Others (20%)
	Isolates from Wound Swab	57% organism growth
	Isolates from Stool	9% growth (E. coli excluded due to normal flora)
	Most Frequent Organism	E. coli (27%-31%)
Antibiotic Usage	Total Antibiotic Usage	20,868 antibiotics used, 61% in wards, 26% ICU, 13% OPD
	Most Used Antibiotic	Ceftriaxone (31%)
	Reserve Antibiotics Usage	Burn Unit: Colistin (68.8%), ICU: Tigecycline (67.9%), Surgery: Linezolid (97.3%)
WHO Critical Pathogen Resistance	Meropenem Resistance	42% Acinetobacter, 32% Pseudomonas aeruginosa, 11% Enterobacteriaceae
	Ceftriaxone Resistance	Highest in Proteus spp (64%), E. coli (59%), K. pneumoniae (48%)

AMR Surveillance in Bangladesh (2017-2023)

Color coding

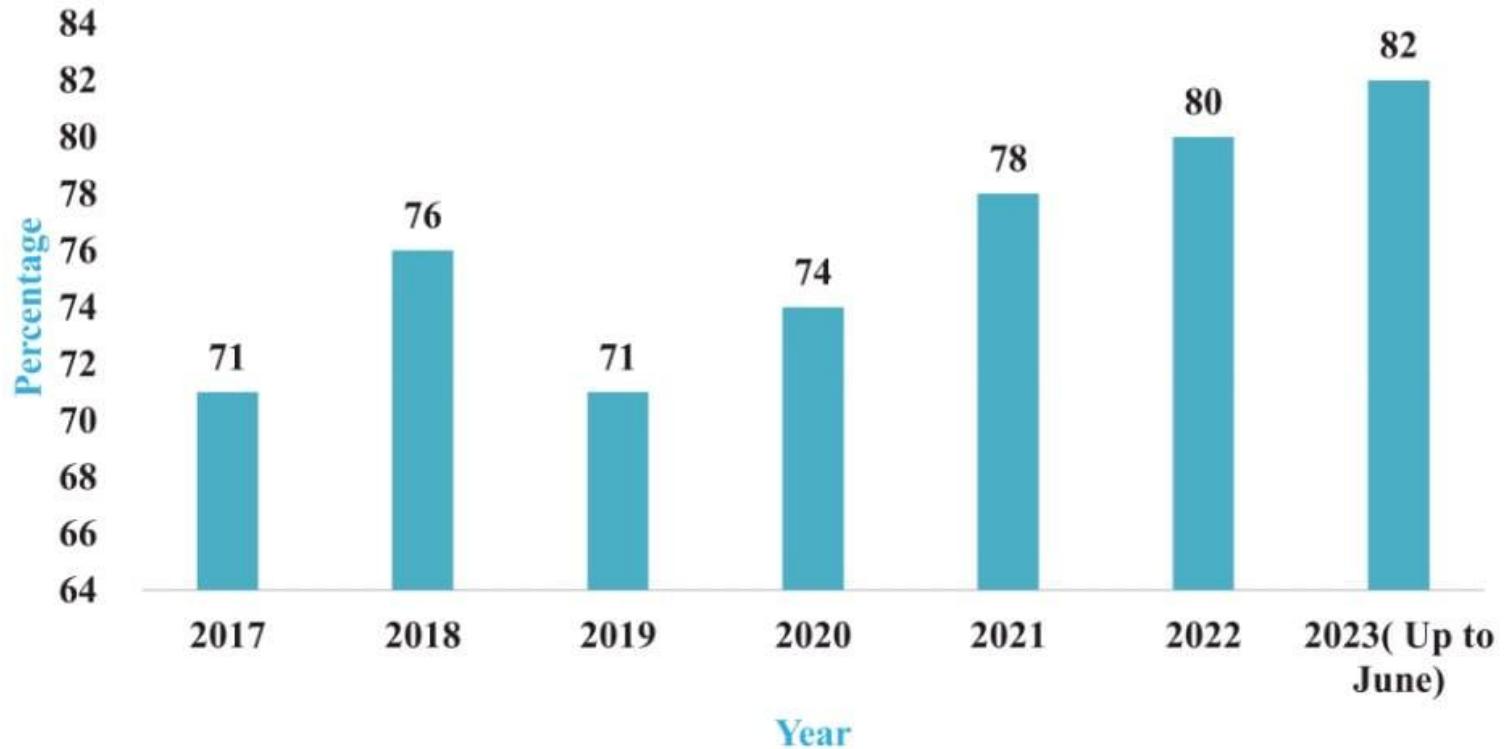
Colour	%S value	Reference						
Green	>80%	Yellow	60-80%	Red	<60%	Grey	Data not available	Chapter 4, CLSI M39, 5 th Ed

Antibiogram of Gram-Negative Bacteria:

Organisms	Name of Antibiotic																					
	Amoxicillin-Clavulanate	Amikacin	Ampicillin	Azithromycin	Aztreonam	Cefexime	Ceftazidime	Ciprofloxacin	Cefepime	Ceftriaxone	Cefuroxime	Doxycycline	Gentamicin	Imipenem	Meropenem	Levofloxacin	Piperacillin-tazobactam	Sulfamethoxazole- Trimethoprim	Tetracycline	Fosfomycin (Urine sample only)	Nitrofurantoin (Urine sample only)	Nalidixic Acid (Urine sample only)
<i>E. coli</i>	42	91	14		50	27	57	41	60	41	28		69	92	91		74	41		97	79	
<i>Klebsiella pneumoniae</i>	39	81	2		58	37	59	54	64	52	35		55	84	82		68	34	42	82	41	
<i>Proteus spp.</i>	25	61	9		41	29	29	34	42	36	16		46	67	82		55	25	17		41	
<i>Pseudomonas aeruginosa</i>		88			35		38	44	42					68	68		60					68
<i>Enterobacter spp.</i>	7	84			65	40		50	67	55	8			77	87		62	33*			24	
<i>Salmonella spp.</i>			81	69				48		97				99	98	86						6
<i>Non typhoidal Salmonella</i>			82	66				54		97				99	99	86		54				6
<i>Shigella spp.</i>			28	44				23		77								40				
(Acb) complex		57					32	40	41	29		44	24	59	56		46	29				

AMR Surveillance in Bangladesh (2017-2023)

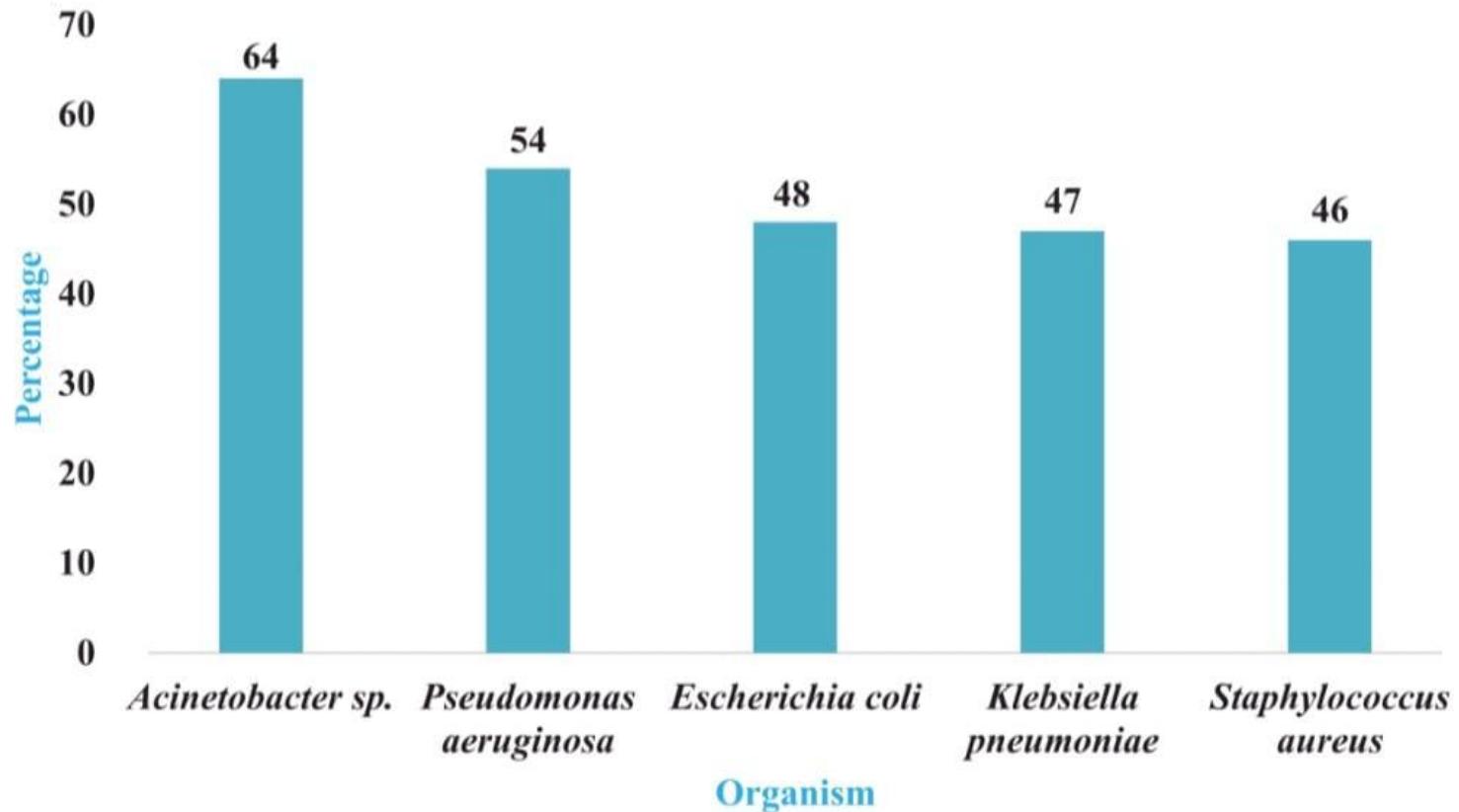
Antibiogram of Gram-Positive Bacteria:


Organisms	Name of Antibiotic															
	Ampicillin	Aztreomycin	Oxacillin	Ciprofloxacin	Ceftriaxone	Clindamycin	Doxycycline	Erythromycin	Gentamicin	Linezolid	Levofloxacin	Penicillin G	Sulfamethoxazole - Trimethoprim	Tetracycline	Vancomycin	Nitrofurantoin (Urine sample only)
<i>Staphylococcus aureus</i>		14	36	30		44	66		64	79		8	49			72
<i>Enterococcus spp.</i>	74			37						90		61		22	83	85
<i>Coagulase negative staphylococci</i>		17	66	44		35	70		36	85		14	30			82
<i>Streptococcus pneumoniae</i>					76	72	65	26		93	52	43	36*		84	

Gram negative Organisms	Class	
	Carbapenems	Tetracyclines
<i>E. coli</i>	91	44
<i>Klebsiella pneumoniae</i>	83	42
<i>Proteus spp.</i>	75	17
<i>Pseudomonas aeruginosa</i>	68	
<i>Enterobacter spp.</i>	82	
<i>Salmonella spp.</i>	99	
Non typhoidal <i>Salmonella</i>	99	
(Acb) complex	58	44

Gram positive Organisms	Class
	Tetracyclines
<i>Staphylococcus aureus</i>	66
<i>Enterococcus spp.</i>	22
<i>Coagulase negative staphylococci</i>	70
<i>Streptococcus pneumoniae</i>	65

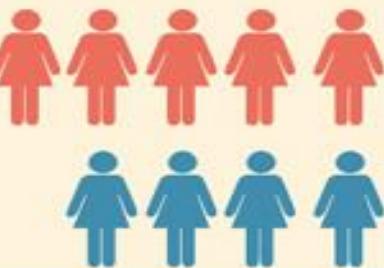
AMR Surveillance in Bangladesh (2017-2023)



Yearly trend percentage of MDR in case-based surveillance (2017-2023)

AMR Surveillance in Bangladesh (2017-2023)

: Overall percentage of MDR in different organisms



ANTIBIOTIC RESISTANCE IN BANGLADESH

52%

patients at **BSMMU ICU**
are multi-antibiotic resistant

Antibiotic resistance at **BSMMU**

6.5%
in 2010

14%
in 2018

19

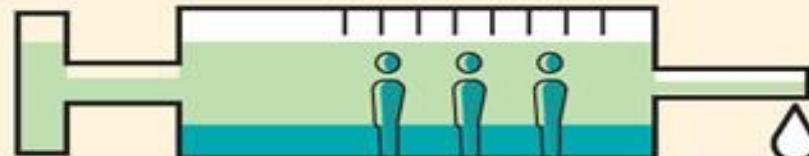
types of
antibiotics used in poultry
and fishery in Bangladesh

54.55%

broiler chickens
infected with multi-drug
resistant bacteria

WHO predicts

10 MILLION



deaths by 2050 due to
antibiotic resistance

People aged
21-30 use
antibiotics most

Because of antibiotic resistance
3% reserve group (last-resort)
antibiotics are being used

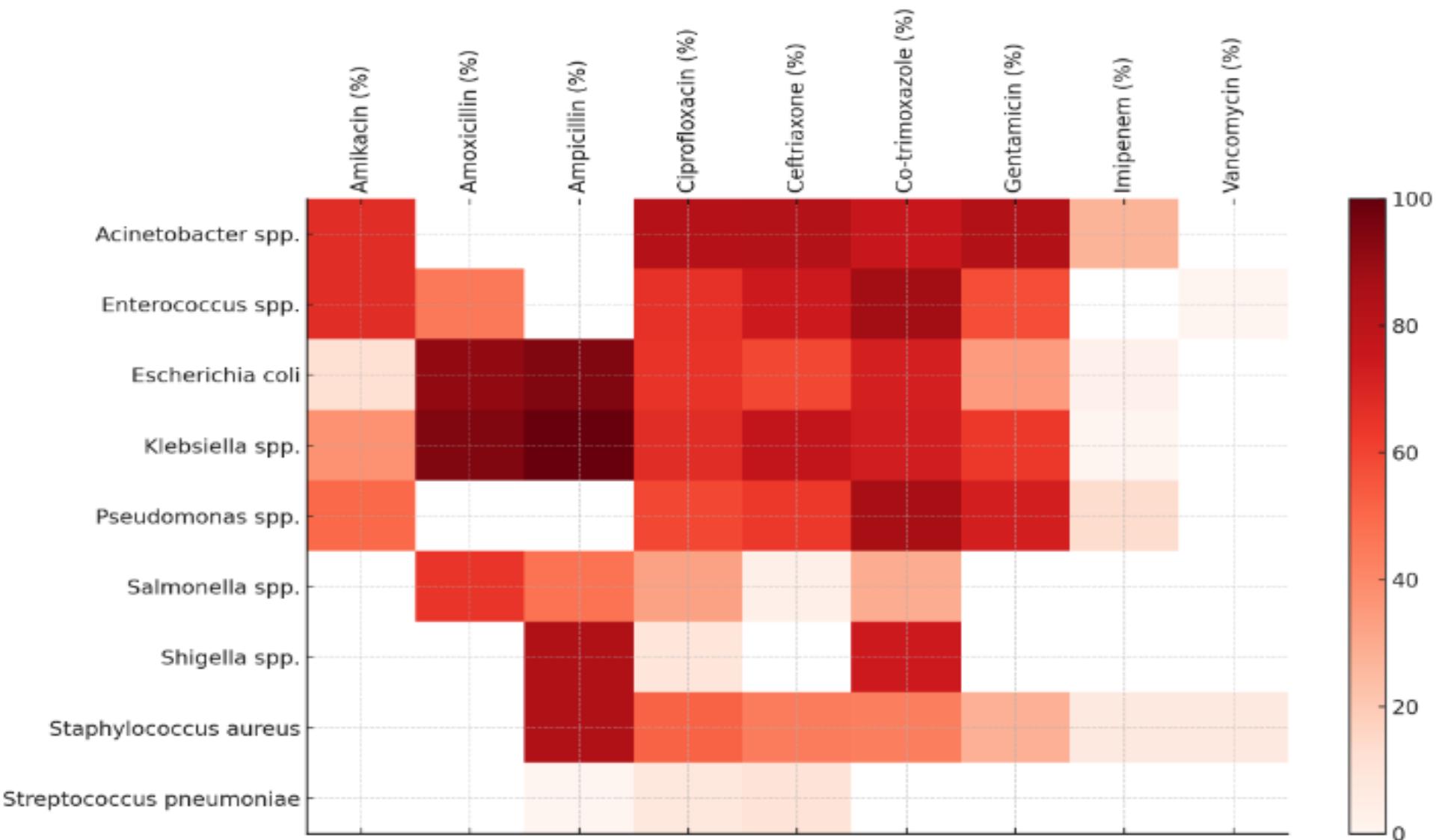
Reserve group
antibiotics use rate
in **ICU**

95%

Antibiotic Resistance Study Result at Popular Medical College Dhaka

Traits		Data
Primary Diagnoses		Aspiration Pneumonia (49%), UTI (20%), Septicaemia (11%), Pneumonia (10%), COPD (4%), Wound Infections (3%)
Microorganisms (Top 4)		Acinetobacter spp (29%), Klebsiella spp (26%), Pseudomonas spp (18%), E. coli (15%)
Sample Types		Tracheal Aspirate (54%), Urine (20%), Blood (10%), Sputum (8%), Wound/Pus (3%)
Antibiotic Resistance	Acinetobacter spp	Ceftriaxone (85%), Ceftazidime (88.8%), Amikacin (86.2%), Gentamicin (84.5%), Meropenem (79.3%)
	Klebsiella spp	Ceftriaxone (84.6%), Ceftazidime (82.6%), Amikacin (46.1%), Gentamicin (66.6%), Quinolones (66.6%)
	Pseudomonas spp	Ceftriaxone (70.5%), Ceftazidime (66.6%), Amikacin (68.7%), Gentamicin (58.8%), Quinolones (81.2%)
	Escherichia coli	Ceftriaxone (80%), Ceftazidime (64.2%), Amikacin (26.6%), Gentamicin (50%), Meropenem (13.3%)

Resistance Patterns for Gram-Negative Bacteria in Bangladesh


Bacteria	Amikacin (%)	Amoxicillin (%)	Ampicillin (%)	Ciprofloxacin (%)	Ceftriaxone (%)	Co-trimoxazole (%)	Gentamicin (%)	Imipenem (%)
Acinetobacter spp.	67.5	-	-	82.2	82.6	75.5	83.3	27.3
Escherichia coli	12	91.1	94.6	65.2	59	72.0	34.5	2.3
Klebsiella spp.	37.4	94.8	100	67.4	78	72.7	63.6	0
Pseudomonas spp.	50	-	-	59.3	63.3	86.6	72.6	13.5
Salmonella spp.	-	64.3	47.1	32.6	3.0	29.4	-	-
Shigella spp.	-	-	83.8	8.9	-	74.5	-	-

Resistance Patterns for Gram-Positive Bacteria in Bangladesh

Bacteria	Amikacin (%)	Amoxicillin (%)	Ampicillin (%)	Ciprofloxacin (%)	Ceftriaxone (%)	Co-trimoxazole (%)	Gentamicin (%)	Imipenem (%)	Vancomycin (%)
Enterococcus spp.	67.3	45.5	-	66.0	74.3	87.5	57.1	-	0
Staphylococcus aureus	-	-	83.8	51.7	44.4	43.2	27.8	7.0	6.8
Streptococcus pneumoniae	-	-	0	8.3	10	-	-	-	-

The heatmap below visually represents the antibiotic resistance of different bacteria in Bangladesh

Causes of Antibiotic Resistance

- **Over Prescription of Antibiotics:** This often occurs when healthcare providers prescribe antibiotics for viral infections or when patients demand them for minor ailments. This misuse accelerates resistance.
- **Patients Not Finishing the Entire Antibiotic Course:** When patients stop taking antibiotics early, it can leave some bacteria alive, allowing them to develop resistance. This practice undermines the effectiveness of treatment.
- **Overuse of Antibiotics in Livestock and Fish Farming:** Antibiotics are frequently used in agriculture to promote growth and prevent disease in healthy animals. This practice can lead to resistant bacteria that enter the human food chain.

Causes of Antibiotic Resistance

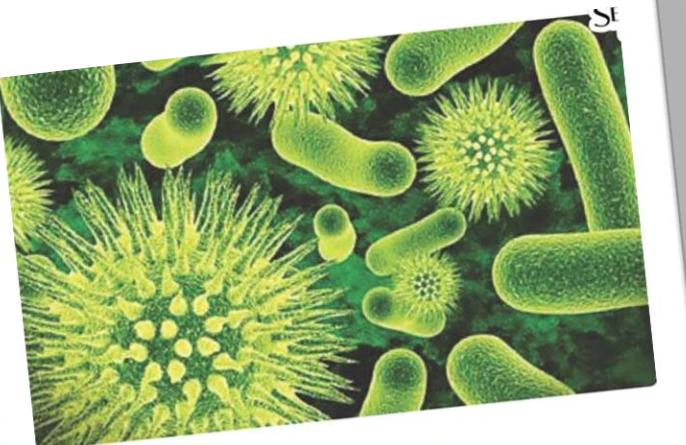
- **Poor Infection Control in Healthcare Settings:** Inadequate infection control practices can lead to the spread of resistant bacteria within hospitals and clinics, putting vulnerable patients at greater risk.
- **Poor Hygiene and Sanitization:** Lack of proper hygiene and sanitation can facilitate the transmission of infections, increasing the need for antibiotics and contributing to resistance.
- **Absence of New Antibiotics Being Discovered:** The pipeline for new antibiotics has dwindled, meaning there are fewer options available to treat resistant infections. This stagnation complicates efforts to combat resistance

কালের কঢ়

প্রাম্পণিক

মেয়াদের নিদিষ্ট
ইন্টারনেট পাকে

বোনাস


প্রকাশ: ২৪ সেপ্টেম্বর, ২০২৪ ০৮:০৬

২৫ বছরে ব্যাকটেরিয়ার কারণে মৃত্যু
হতে পারে ৪ কোটি মানুষের

সাবির খান, স্ক্যানিনেভিয়া প্রতিনিধি

অ + অ -

য়া
র
রতি

তানের (রাজশাহী) প্রতিনিধি

রাজশাহীয় তানের উপজেলার পাঁচবিংশ ইউনিয়ন একেবারে প্রত্যক্ষভাবে দেওয়া গ্রাম। এ গ্রামের আয়জন অল্প। করেই শেষ এরশাদ অল্প। নবম শ্রেণি পর্যন্ত পড়াশোনা করেই শেষ করেছেন শিক্ষাজীবন। নিজ গ্রাম দেওলা-ভিপাড়া মোড়ে পকাবর ভুলে দীর্ঘ ১০ বছর ধরে করছেন ওষুধের দোকান। নেই দোকানের ডাগ লাইসেন্স, নেই কোনো চিকিৎসার প্রশিক্ষণের সন্দার শিক্ষিকার বক্তব্য নন। ব্যবসি রোগীকে নিয়মিত চিকিৎসা দিচ্ছেন নিজেই। ডায়াবেটিস, হাইপেন্স, কাট, বাথ, হৃত-সন্দি হলৈই নিয়মিত বাধানশীক ও আন্টিবায়োটিক নিয়েছেন রোগীদের।

একই উপজেলা বাধাইড় ইউপির বন্দলপুর গ্রামের জহরল ইসলাম। প্রাইমারি কুল পর্যন্ত পড়েন কৃষি কাজ ভালো না লাগায় গত ৬ বছর অগে গ্রামের মোড়ে টিনের চপ করেছেন মুদির দোকান। দোকানে চাল, চাল তেল লবনশহ চা-পানের ব্যবহা আছে। তার দোকান ঘরের সদার মধ্যে এক পাশে রেখে সজানো আন্টিবায়োটিকসহ নানা রোগের ওষুধ। মুদি সেকানি জহরল ইসলামের বেশি রোগী এলাকার অনিবাসীসহ শ্রমজীবী মানুষ। রোগের কথা উনে নিজে দিচ্ছেন ওষুধ।

জীবন ব্রাক্কারী ওষুধের ভয়কর ব্যবহার ও চিকিৎসার গল্প দুটি ত্বু তানের উপজেলার দেওয়া ও বন্দলপুর গ্রামের নয়। রাজশাহী, নওগাঁ ও চাপাইনালবগুজ্জ জেলাসহ পুরো বরেন্দ্র অঞ্চলের প্রতিটি গ্রাম ও মোড়ে এমন হাজারও ডাগ লাইসেন্সবিহীন ওষুধের দোকান গড়ে উঠেছে। আর মুদি দোকানে ওষুধ রাখার সংখ্যা আরও বেশি। এসব দোকানে গ্রামের সহজ-সরল মানুষের চিকিৎসার নামে অপচিকিৎসা হচ্ছে, দেওয়া হচ্ছে অ্যান্টিবায়োটিক যার বেশিরভাগ নকল ওষুধ।

রাজশাহী জেলা ডাপিস্ট অ্যান্ট কেমিস্ট সমিতি আওতায় মুকুমালা বাজারে রুবেল ফার্মেসি মালিক হালিমজামান রুবেল জানান, দেশের অনেক নামিদামি কোম্পানির নাম ব্যবহার করে এন্টিবায়োটিকসহ অনেক রকম নকল ওষুধ

যায়বারা ।

২৩ সেপ্টেম্বর ২০২৪ সোমবার

গ্রামে ওষুধের দোকানিই
চিকিৎসকের তুমিকায়

তৈরি করা হয়। এসব নকল ওষুধ কোম্পানির লেকজন লোড দেখিয়ে গ্রামের কামোসিলোকে তানের ওষুধ বিক্রিতে উৎসাহ দেন। আর বেশি লাভের অশায় দোকানিয়া নকল ওষুধ গ্রামের সহজ-সরল মানুষের কাছে উচ্চলাভে বিক্রি করেন।

সর্বজিমিন গত এক সপ্তাহ রাজশাহীয় তানের, পোদগাটা, চাপাইনবাবগঞ্জের নাচোল ও নওগাঁর নিয়ামতপুর উপজেলার গ্রামকলে ঘুরে দেখা যায়, এসব কোনো গ্রামের মোড় নেট পেটেন্সে একাধিক ওষুধের দোকান গড়ে দেকানিয়া নিজেই চিকিৎসকের তুমিক দেওয়া গড়ে ওঠা ওষুধে দেকানিয়া নিয়ে নানা ওষুধ দিয়ে থাকে রোগীকে।

এসব বিষয়ে ডাগ লাইসেন্স বিহীন দেওয়া গ্রামে এরশাদ অল্প ও বন্দলপুর সর্বসমতে নাপা ও স্যালাইন, গ্যাসের ওষুধ আবরা বিক্রি করে থাক। হাতের কাছে ওষুধ পেয়ে গ্রামের মানুষ উপকার হয় বলে দাবি করেন তারা।

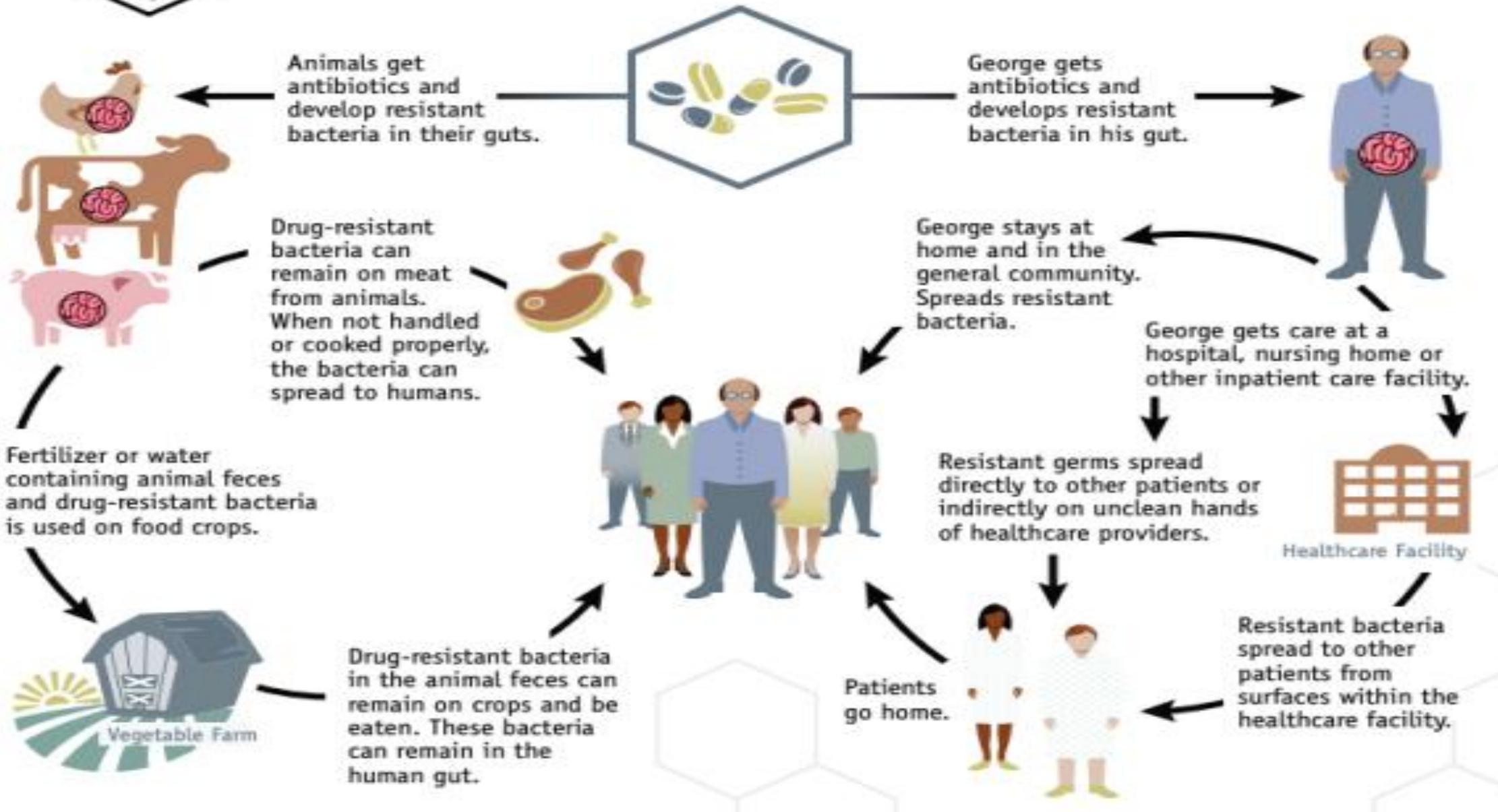
বালাদেশ ডাপিস্ট আন্ট কেমিস্ট সমিতি রাজশাহী জেলা শাখার সহ-সভাপতি শামিম চৌধুরী বলেন, রাজশাহী জেলা সমিতির আওতায় ৯শ'র বেশি ফার্মেসি রেটেন্শন ই ফার্মেসি ব্যবসায়ীর চিকিৎসকদের প্রেসক্রিপশন ই একটি ও আন্টিবায়োটিক রোগীদের দেন না। সমিতির ১৫ থেকে ডাগ লাইসেন্স ছাড়া গ্রামে গড়ে ওঠা ও মুদির দেক ওষুধ বিক্রি বিষয়ে চলতি মাসের ২৪ তারিখে জেলা শাখা একটি সেমিনারের আয়োজন করা হয়েছে। সে সেমিনারে জেলা সিভিল সর্জন ছাড়াও প্রশাসনের উর্বতন কর্মকর্তা থাকবেন। নকল ওষুধ ও গ্রামে যত্নত গড়ে ওঠা ফার্মেসি করার বিষয়ে আলোচনা হবে।

মুকুমালা বাজার কমপ্লেক্স উপ-সহকারী মেডিকেল অফিসার দ্বারা দুবা বলেন, অবশ্য আন্টিবায়োটিক ও বাধানশীক ও দিলে রোগীর রোগ প্রতিরোধ সক্ষমতা হারাবে। কিন্তু কিডানি ডায়েজ হয়ে পড়বে। পরে জটিল রোগ অ্যান্টিবায়োটিক আর কাজে লাগবে না। আর নকল সেবন করলে রোগীর আরও ডয়াবহ ক্ষতি হতে পারে।

বান্দরগাড়িয়া ও বরগুনায়

ভারতীয় পানি আগ্রাসন

Why Aren't We Getting New Antibiotics?



- **Economic Disincentives:** Antibiotics are less profitable due to short treatment courses and efforts to limit use, reducing the market for new drugs.
- **High Development Costs:** Research and development are expensive, with long timelines and a high risk of failure.
- **Scientific Barriers:** Most easily discovered antibiotics have been found. New targets are harder to identify, and bacteria rapidly develop resistance.
- **Regulatory Challenges:** Stringent approval processes and post-market surveillance further delay new antibiotic releases.
- **Industry Shift:** Pharmaceutical companies focus on more lucrative chronic disease drugs with ongoing use and larger returns.

Examples of How Antibiotic Resistance Spreads

Antibiotic Stewardship

A strategy to optimize antibiotic use and combat resistance.

Goals:

- Improve patient outcomes
- Reduce adverse effects
- Decrease resistance rates

Benefits:

- Enhanced patient safety
- Cost efficiency
- Preserved antibiotic effectiveness

Key Strategies:

- **Education:** Train healthcare providers
- **Guidelines:** Implement evidence-based protocols
- **Monitoring:** Track usage and resistance patterns
- **Feedback:** Regular performance reports
- **Infection Control:** Prevent infections effectively

Management of MDR Infections

World Health Organization

WHO introduced the WASH water sanitation and hygiene and wastewater management preventing infections and reducing the spread of antimicrobial resistance AMR.

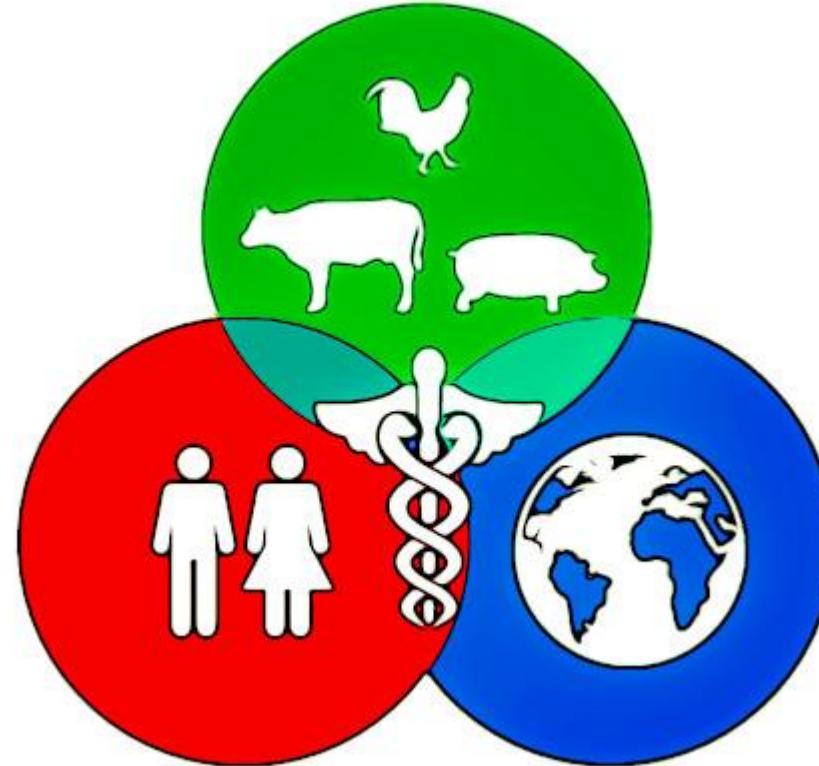
-

Management of MDR Infections

Pharmacist must be present at the medicine shop for dispensing drugs.

Management of MDR Infections

Proper knowledge should be known by The healthcare professionals before prescribing antibiotics.


Management of MDR Infections

**Overdose and underdose of antibiotics
should be avoided.**

Management of MDR Infections

**Multisectoral approach is needed for
preventing Antimicrobial Resistance**

Thank You